Search results for "Asymptotic computational complexity"
showing 4 items of 4 documents
An Introduction to Computational Complexity
2016
This chapter is not strictly about algebra. However, this chapter offers a set of mathematical and computational instruments that will allow us to introduce several concepts in the following chapters. Moreover, the contents of this chapter are related to algebra as they are ancillary concepts that help (and in some cases allow) the understanding of algebra.
On Physical Problems that are Slightly More Difficult than QMA
2013
We study the complexity of computational problems from quantum physics. Typically, they are studied using the complexity class QMA (quantum counterpart of NP) but some natural computational problems appear to be slightly harder than QMA. We introduce new complexity classes consisting of problems that are solvable with a small number of queries to a QMA oracle and use these complexity classes to quantify the complexity of several natural computational problems (for example, the complexity of estimating the spectral gap of a Hamiltonian).
Algorithmic Information Theory and Computational Complexity
2013
We present examples where theorems on complexity of computation are proved using methods in algorithmic information theory. The first example is a non-effective construction of a language for which the size of any deterministic finite automaton exceeds the size of a probabilistic finite automaton with a bounded error exponentially. The second example refers to frequency computation. Frequency computation was introduced by Rose and McNaughton in early sixties and developed by Trakhtenbrot, Kinber, Degtev, Wechsung, Hinrichs and others. A transducer is a finite-state automaton with an input and an output. We consider the possibilities of probabilistic and frequency transducers and prove sever…
Non-intersecting Complexity
2006
A new complexity measure for Boolean functions is introduced in this article. It has a link to the query algorithms: it stands between both polynomial degree and non-deterministic complexity on one hand and still is a lower bound for deterministic complexity. Some inequalities and counterexamples are presented and usage in symmetrisation polynomials is considered.